GSHMC: An efficient method for molecular simulation
نویسندگان
چکیده
Abstract The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
منابع مشابه
Hybrid Monte Carlo: theoretical results and practical implications
Introduced by Duane and his co-workers in 1987, the hybrid Monte Carlo (HMC) proved itself to be both an efficient sampling device and an effective realization of a stochastic thermostat. The method combines the best features of two well established simulation techniques, molecular dynamics and Monte Carlo. Among its drawbacks are inability to reproduce dynamical properties of a system, and lac...
متن کاملNew Hybrid Monte Carlo Methods for Efficient Sampling: from Physics to Biology and Statistics
We introduce a class of novel hybrid methods for detailed simulations of large complex systems in physics, biology, materials science and statistics. These generalized shadow Hybrid Monte Carlo (GSHMC) methods combine the advantages of stochastic and deterministic simulation techniques. They utilize a partial momentum update to retain some of the dynamical information, employ modified Hamiltoni...
متن کاملConstant pressure hybrid Monte Carlo simulations in GROMACS.
Adaptation and implementation of the Generalized Shadow Hybrid Monte Carlo (GSHMC) method for molecular simulation at constant pressure in the NPT ensemble are discussed. The resulting method, termed NPT-GSHMC, combines Andersen barostat with GSHMC to enable molecular simulations in the environment natural for biological applications, namely, at constant pressure and constant temperature. Gener...
متن کاملMultiple-time-stepping generalized hybrid Monte Carlo methods
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to be...
متن کاملMeso-GSHMC: A stochastic algorithm for meso-scale constant temperature simulations
We consider the problem of time-stepping/sampling for molecular and meso-scale particle dynamics. The aim of the work is to derive numerical time-stepping methods that generate samples exactly from the desired target temperature distribution. The numerical methods proposed in this paper rely on the well-known splitting of stochastic thermostat equations into a conservative and a fluctuation-dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008